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Abstract. A preliminary performance assessment of the well-known Non-

Dominated Sorting Genetic Algorithm II and one of its variants to optimize the 

electrical power production in the state of Oklahoma is presented in this paper. 

Such variant has a chaotic model to generate the initial population. Solar, wind 

and natural gas power systems, the first two renewable energies, are considered 

in the problem of interest. Three conflicting objectives are optimized: (1) power 

production, (2) production costs and (3) CO2 emissions. The spacing metric is 

computed to compare the performance of both variants. The obtained results 

suggest that the chaotic model for the initial population does not improve the 

performance of the original algorithm in this particular multi-objective 

optimization problem. 

Keywords: evolutionary multi-objective optimization, energy production, re-

newable energies. 

1 Introduction 

Climate change is a very relevant problem that human kind is facing. The United 

Nations has warned that approximately a dozen years are left to limit climate change at 

1.5 °C in order to prevent a world crisis [1]. Power production is one of the key elements 

to consider. Fossil fuels have been and continue to be widely used to produce electricity. 

These energy sources, when burned to generate heat to produce power, spreads nitrogen 

oxides and other contaminants that contribute to the smog and acid rain [2]. 

Several countries, including the United States, have started to adopt renewable 

energy sources, such as solar and wind energy, to produce power. In 2017, around the 

11% of the total consumed energy in the US came from renewable energies [3]. With 

respect to the state of Oklahoma, according to the US department of energy, 50% of the 

annual energy production in 2016 comes from natural gas, 38% from coal, 10% comes 
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from solar and wind power and 1% from hydro-energy [4]. Despite the US government 

position about climate change, as mentioned in [5], the renewable energy industry is 

expected to grow and play an important role in the energy production in some of the 

most populated states of the country. 

Beyond the merely direct utilization of these power sources, an optimal distribution 

of the generation power between them is highly desirable. To optimize the power 

production problem different multi-objective evolutionary algorithms (MOEAs) have 

been adopted. The algorithm of interest in this paper is the Non-Dominated Sorting 

Genetic Algorithm II (NSGA-II) [6], which has been a popular choice to solve multi-

objective power optimization problems. Wahlroos et al. [7] optimized a generation 

system in terms of CO2 emissions, production costs and production adequacy, using 

NSGA-II. Wang and Zhou [8] utilized the same algorithm to optimize the emissions 

and energy-savings of a wind power system. Liu and Dongdong [9] optimized a 

multiple source power system considering its production cost and the amount of 

emissions it produces. Zhou and Sun [10] utilized this MOEA to optimize a hybrid 

energy system consisting of solar power and wind power. In this study, the results were 

compared with a modified version of this algorithm, called L-NSGA-II [11]. 

Motivated by the above mentioned, and particularly by [10], a multi-objective 

optimization problem is stated for the power production of Oklahoma and solved using 

NSGA-II and one of its variants (L-NSGA-II) with the aim to assess their performance 

in this new real-world instance. 

The paper is organized as follows: Section 2 states the problem of interest, Section 

3 details both, NSGA-II and the variant adopted in this work. After that, Section 4 

includes the experiments and results and Section 5 presents the conclusions and 

future work. 

2 Problem Statement 

A multi-objective optimization problem can be defined, without loss of generality, as 

to: find a solution vector �⃑� = [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇, which minimizes 𝑓(�⃑�) =

[𝑓1(�⃑�), 𝑓2(�⃑�), … , 𝑓𝑚(�⃑�)]𝑇, where each 𝑥𝑗 ∈ [𝑙𝑜𝑗 , 𝑢𝑝𝑗].  

Pareto dominance is used as a criterion to solve multi-objective optimization 

problems, and it is defined as follows: a solution vector �⃑� = [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇 is said to 

dominate �⃑� = [𝑦1, 𝑦2, … , 𝑦𝑛]𝑇 , denoted as �⃑� ≺ �⃗� if and only if 𝑓𝑖(�⃑�) ≤ 𝑓𝑖(�⃑�) for all 𝑖 ∈

[1, … , 𝑚] and 𝑓𝑖(�⃑�) < 𝑓𝑖(�⃑�) for at least one 𝑖 ∈ [1, … , 𝑚]. 

A solution vector 𝑥∗⃑⃑⃑⃑⃑ is part of the Pareto Optimal Set 𝑃∗ if there does not exist other 

solution �⃑� such that �⃑� ≺ 𝑥∗⃑⃑⃑⃑⃑.  The Pareto Optimal front is then 𝑃𝐹∗ = {𝑓(�⃗�)|�⃗� ∈ 𝑃∗}. 

The analyzed power production system, as previously mentioned, is based on solar, 

wind and natural gas energy. The three objectives to be considered are: (1) the overall 

power production, (2) the overall production cost, and (3) the overall CO2 emission. 

The decision variables are the operation hours of the solar, wind and natural gas 

production systems, hs, hw and hg, respectively, and the natural gas power produced 

Pg, which is assumed without considering the ways to produce it.  
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2.1 Power Production Function 

This objective function represents the entire, monthly amount of power produced by 

the three sources. This objective function is constructed as shown in Eq. 1: 

𝑃 = 𝑓𝑠𝒉𝒔𝑃�̅� + 𝑓𝑤𝒉𝒘𝑃𝑤
̅̅ ̅ + 𝑓𝑔𝒉𝒈𝑷𝒈. (1) 

Decision variables are bolded. 𝑃�̅� and 𝑃𝑤
̅̅ ̅ are the estimation of the generated solar 

and wind power for any arbitrary month (explained later). 𝑃𝑔 is the generated natural 

gas power, considered as decision variable (assuming it could be controlled). Constants 

fs, fw and fg are the capacity factors of solar, wind and natural gas systems, respectively 

(see Table 1). 

Table 1. Capacity factors (percentage of input power that is effectively transformed into 

electrical power) of the three studied energy sources. 

Power Source Capacity Factor (%) 

Solar Power (fs) 33 

Wind Power (fw) 43 

Natural Gas Power (fg) 87 

To get all three objective functions to be minimized, this objective function, origi-

nally to be maximized, is transformed by using the concept of power relation as in 

Eq. 2: 

𝑃𝑅𝑇 =  
𝑁 ∗ 𝑃𝑆𝑊𝐺

𝑓𝑠𝒉𝒔𝑃�̅� + 𝑓𝑤𝒉𝒘𝑃𝑤
̅̅ ̅ + 𝑓𝑔𝒉𝒈𝑷𝒈

, (2) 

where PSWG is the current amount of energy produced by the three sources together. 

This value is approximately 7.07 MWh and it was measured for the month of August, 

2018 [12]. N is an increasing factor. In an ideal context, where renewable power is 

reinforced, the increasing factor is greater than one, so that the total energy from solar, 

wind and natural gas power is increased. For this study, this total energy production is 

encouraged to be doubled, then 𝑁 = 2.  

2.2 Production Cost Function 

The second objective function is the total, monthly production cost. Eq. 3 shows this 

objective to be minimized: 

𝐶 = 𝑐𝑠𝒉𝒔𝑃�̅� + 𝑐𝑤𝒉𝒘𝑃𝑤
̅̅ ̅ + 𝑐𝑔𝒉𝒈𝑷𝒈, (3) 

where constants cs, cw and cg are the production costs of solar, wind and natural gas 

systems, respectively (see Table 2). 
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Table 2. Production cost of solar, wind, and natural gas power systems. 

Power Source Production Cost ($/MWh) 

Solar Power (cs) 48.2 

Wind Power (cw) 33 

Natural Gas Power (cg) 15.5 

 Data from Tables 1 and 2 are approximations obtained from [13]. 

2.3 CO2 Emissions Function 

The third objective function is the monthly CO2 emissions caused by the three energy 

sources. This objective function to be minimized is introduced in Eq. 4: 

𝐸 = 𝑒𝑠𝒉𝒔𝑃�̅� + 𝑒𝑤𝒉𝒘𝑃𝑤
̅̅ ̅ + 𝑒𝑔𝒉𝒈𝑷𝒈, (4) 

where the CO2 emissions rates for the solar, wind and natural gas systems are es, ew and 

eg, respectively (see Table 3). 

Table 3. CO2 emissions rates (related with global warming [14]) for solar, wind, and natural gas 

power systems. 

Power Source 
CO2 Emissions Rate 

(gr/KWh) 

Solar Power (es) 48.2 

Wind Power (ew) 33 

Natural Gas Power (eg) 15.5 

The estimations of solar and wind power 𝑃�̅� and  𝑃𝑤
̅̅ ̅ , depend on the solar radiation 

and wind speed, so climate predictions are required. Climate is hard to predict. Moura 

and de Almeida proposed a climate model prediction for Portugal, based on previous 

data [15]. A similar model is used for the state of Oklahoma but using applicable data. 

A dataset was built in Microsoft Excel with measurements of solar radiation and wind 

speeds for each month of each year from 2003 to 2017, provided by MESONET, an 

environmental monitoring station available in the state of Oklahoma [16].    

The solar radiation measured by MESONET is in MJ/m2. It is multiplied by the total 

solar panels area and divided by the total number of seconds in each month. Months 

with 30, 31 and 28 days were considered. The result unit is the Watt (W). The wind 

speed is measured in miles per hour and only needs to be converted to m/s. 

3 NSGA-II and L-NSGA-II 

NSGA-II is a genetic algorithm (GA) adapted to solve multi-objective optimization 

problems. Besides those GA elements (tournament selection and crossover and muta-

tion operators), NSGA-II uses the so-called non-dominated sorting process to rank so-

lutions based on Pareto dominance from the union of parents and offspring.  

Those non-dominated solutions get rank 1 and they are separated from the afore-

mentioned union. 

86

Gustavo Adolfo Vargas Hakim, Efrén Mezura Montes

Research in Computing Science 149(3), 2020 ISSN 1870-4069



 

From the remaining solutions those non-dominated are assigned rank 2 and so on. 

The next population is chosen based on ranking. Furthermore, a crowding-distance 

measure in the objective space is used to choose among solutions with the same ranking 

to get a population with the same size to start the next generation. A general pseudocode 

is presented in Figure 1. 

L-NSGA-II keeps most of the original NSGA-II structure, except for adding a dif-

ferent population initialization method. Here, a hybrid chaotic model is defined for the 

initialization part. The usual initialization method is shown in Eq. 5: 

𝑥𝑗 = 𝑙𝑜𝑗 + (𝑢𝑝𝑗 − 𝑙𝑜𝑗)𝑢, (5) 

where u is a random number with uniform distribution; loj and upj are the variable 

boundaries. In L-NSGA-II, the random number u is substituted. First, for the current 

value of a counter k, there are two randomly found numbers (between 0 and 1) defined 

as part of the hybrid chaotic mapping model, uk and rk. The value of u for the next count 

k + 1 is defined in Eq. 6: 

𝑢𝑘+1 = 𝜇𝑢𝑘(1 − 𝑢𝑘), (6) 

where μ is a control variable, set as 0.5 for this study. The value of r for the step k + 1 

is calculated depending on the value of rk. This is displayed in Eq. 7: 

𝑟𝑘+1 = {

1

1.001
(2𝑟𝑘 + 0.001𝑢𝑘),      0 ≤ 𝑟𝑘 ≤ 0.5,

1

1.001
[2(1 − 𝑟𝑘) + 0.001𝑢𝑘],     0.5 < 𝑟𝑘 ≤ 1.

  (7) 

Then, the initialization of a single variable of the next step k + 1 is as in Eq. 8: 

𝑥𝑗 = 𝑙𝑜𝑗 + (𝑢𝑝𝑗 − 𝑙𝑜𝑗)𝑟𝑘+1. (8) 

Begin 

Generate an initial population Pop with POPSIZE solutions 

Evaluate each solution in the objective functions 

Apply non-dominated sorting to Pop 

While termination condition not reached 

Generate offspring population Offs 

Evaluate each offspring in the objective functions 

Apply non-dominated sorting to Pop U Offs 

Select, based on ranking and crowding distance, the next population from Pop U Offs 

End While 

End 

Fig. 1. NSGA-II general pseudocode. 
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According to the authors of this initialization proposal, this initialization model 

should contribute to the diversity of solutions in the Pareto front. Diversity is highly 

desired as it provides for more options to choose between advantages and disadvantages 

of each possible solution. It remains to be seen if this applies for the problem of interest 

in this paper. 

4 Experiments and Results 

The optimization of the power production was conducted following the most accurate 

conditions that were possible, i.e., actual wind farms (412 wind turbines) and solar 

panels (20,000) that are currently in use in Oklahoma were considered. The decision 

variables were constrained due to the real limitations of the power production systems 

and the problem requirements. The hours of operation could not exceed the number of 

hours in a month. The maximum number of days considered was 28 (as February is the 

shortest month), equivalent to 672 hours. The minimum number of hours allowed was 

240 hours. The maximum produced natural gas power was 7.07 MW and its minimum 

produced power was 4.88 MW. The boundaries of the decision variables are 

summarized in Table 4. 

Table 4. Boundaries of the decision variables. 

 hs hw hg Pg 

Maximum 672 hr 672 hr 672 hr 7.07 MW 

Minimum 240 hr 240 hr 240 hr 4.88 MW 

The simulations of power production were executed using MATLAB using an Intel 

Core i7 processor. A previously constructed NSGA-II framework by Seshadri was 

utilized and modified to run the problem objectives and also to code L-NSGA-II [17]. 

Both algorithms were tested using 100 generations and an initial population of 20 

individuals. Crossover and mutation were performed with 90% and 10% of 

probabilities, respectively, in both cases. 

Yen and He defined several metrics to test the performance of MOEAs [18]. In this 

work the Spacing metric was chosen as it measures how diverse or well distributed are 

the solutions in a Pareto front. Eq. 9 describes the spacing metric: 

𝑆 = √
1

�̅�
∑(𝑑𝑖 − �̅�)2  ,

�̅�

𝑖=1

 (9) 

where di is the Euclidean distance between a solution xi and its nearest solution, �̅� is the 

number of solutions in the Pareto front and �̅� is the average Euclidean distance between 

solutions. A lower value indicates a better solution distribution.  

For this paper, the experiments covered the month of May, 2022 and each algorithm 

was run 25 times. The spacing value was calculated for each one of the 25 fronts 

obtained per variant and the averages per variant are shown in Table 5. 
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Table 5. Average spacing for the Pareto Fronts of each variant for May, 2022. 

Algorithm Average Spacing 

NSGA-II 6.87 × 108 

L-NSGA-II 6.77 × 108 

Considering the fact that none of the results samples fit the normal distribution 

(based on the Kolmogorov-Smirnov test), the Wilcoxon Signed-Rank test was 

computed, and its result (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.672) indicated no significant differences 

between the two compared algorithms. Fig. 2 shows two Pareto fronts from both 

algorithms and a slightly better distribution provided by L-NSGA-II can be observed. 

The decision-making of the best solution from the obtained Pareto front was based 

on the third objective function, i.e., CO2 emissions. Such decision was based on the 

idea of getting the most environmentally friendly power production option. From the 

Pareto front in Fig. 2 (right), the individual that produced the lowest emissions was 

chosen (hs = 361.06 h, hw = 419.79 h, hg = 251.6 h and Pg = 6.837 MW), which 

corresponds to the L-NSGA-II front. It is worth noticing that the operation hours 

number (hg = 251.6 h) of the natural gas system was the lowest of the three sources, 

reducing the CO2 emissions. 

5 Conclusions and Future Work 

A comparison of a variant of the popular NSGA-II algorithm with the original to solve 

one instance of the power production in Oklahoma was presented in this paper. The 

variant was L-NSGA-II, which had a chaotic model to generate the initial population. 

The spacing metric was used for comparison purposes between the two algorithms 

when solving one instance of the problem related with one month (May 2022). The 

statistical results obtained suggested that the way L-NSGA-II generates the initial 

population does not produce any significantly distribution improvement in the Pareto 

front. The preference handling also showed that, when preferring the objective related 

to CO2 emissions, an environmentally friendly solution can be obtained.  

 

Fig. 2. Pareto front using NSGA-II (left) and using L-NSGA-II (right). 
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Future work consists on testing both variants in more problem instances and using 

other metrics like hyper-volume. Moreover, preference handling can be used within the 

search to focus only on well-distributed solutions favoring low CO2 emissions.  

Appendix 

The codes used and the climate database constructed for this paper can be found and 

downloaded following the link below: http://drive.google.com/drive/fold-

ers/1eNfMthw7v-i-gK_UkQx_zW6Wk3zFgt6J?usp=sharing 
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